Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Enhanced efficiency and stability of polymer solar cells with TiO2 nanoparticles buffer layer

Identifieur interne : 000135 ( Main/Repository ); précédent : 000134; suivant : 000136

Enhanced efficiency and stability of polymer solar cells with TiO2 nanoparticles buffer layer

Auteurs : RBID : Pascal:14-0095575

Descripteurs français

English descriptors

Abstract

TiO2 sols synthesized with a facile solution-based method were used as a buffer layer between the active layer and the cathode Al in conventional structure polymer solar cells (PSCs). Using transmission electron microscopy (TEM), selected area electron diffraction (SAED), X-ray diffraction (XRD) and atomic force microscopy (AFM), the morphological and crystallographic properties of synthesized TiO2 nanoparticles (TiO2 NPs) as well as the buffer layer were studied in detail. It was observed that by increasing H2O in the process of peptization both the crystallinity and particle size of TiO2 NPs were enhanced, while the particles in sol showed a narrower size distribution conformed by dynamic light scattering. Inserting TiO2 NPs as a buffer layer in conventional structure PSCs, both the power conversion efficiency (PCE) and stability were improved dramatically. PSCs based on the structure of ITO/PEDOT:PSS/P3HT:PCBM/TiO2 NPs/Al showed the short-circuit current (Jsc) of 12.83 mA/cm2 and the PCE of 4.24%. which were improved by 31% and 37%, respectively comparing with the reference devices without a TiO2 buffer layer. The stability measurement showed that PSC devices with a TiO2 NPs buffer layer could retain 80% of the original PCEs after exposed in air for 200 h, much better than the devices without such a buffer layer. The effect can be attributed to the protection by the buffer layer against oxygen and H2O diffusion into the active layers. The observations indicate that TiO2 NPs synthesized by facile solution-based method have great potential applications in PSCs, especially for large-area printed PSCs.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:14-0095575

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Enhanced efficiency and stability of polymer solar cells with TiO
<sub>2</sub>
nanoparticles buffer layer</title>
<author>
<name>JIAN XIONG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Super-microstructure and Ultrafast Process in Advanced Materials, School of Physics and Electronics, Central South University</s1>
<s2>Changsha, Hunan 410083</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Changsha, Hunan 410083</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics and Electronics, Central South University</s1>
<s2>Changsha, Hunan 410083</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Changsha, Hunan 410083</wicri:noRegion>
</affiliation>
</author>
<author>
<name>BINGCHU YANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Super-microstructure and Ultrafast Process in Advanced Materials, School of Physics and Electronics, Central South University</s1>
<s2>Changsha, Hunan 410083</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Changsha, Hunan 410083</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics and Electronics, Central South University</s1>
<s2>Changsha, Hunan 410083</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Changsha, Hunan 410083</wicri:noRegion>
</affiliation>
</author>
<author>
<name>CONGHUA ZHOU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Super-microstructure and Ultrafast Process in Advanced Materials, School of Physics and Electronics, Central South University</s1>
<s2>Changsha, Hunan 410083</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Changsha, Hunan 410083</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics and Electronics, Central South University</s1>
<s2>Changsha, Hunan 410083</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Changsha, Hunan 410083</wicri:noRegion>
</affiliation>
</author>
<author>
<name>JUNLIANG YANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Super-microstructure and Ultrafast Process in Advanced Materials, School of Physics and Electronics, Central South University</s1>
<s2>Changsha, Hunan 410083</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Changsha, Hunan 410083</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics and Electronics, Central South University</s1>
<s2>Changsha, Hunan 410083</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Changsha, Hunan 410083</wicri:noRegion>
</affiliation>
</author>
<author>
<name>HAICHAO DUAN</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Super-microstructure and Ultrafast Process in Advanced Materials, School of Physics and Electronics, Central South University</s1>
<s2>Changsha, Hunan 410083</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Changsha, Hunan 410083</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics and Electronics, Central South University</s1>
<s2>Changsha, Hunan 410083</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Changsha, Hunan 410083</wicri:noRegion>
</affiliation>
</author>
<author>
<name>WENLONG HUANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Super-microstructure and Ultrafast Process in Advanced Materials, School of Physics and Electronics, Central South University</s1>
<s2>Changsha, Hunan 410083</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Changsha, Hunan 410083</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics and Electronics, Central South University</s1>
<s2>Changsha, Hunan 410083</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Changsha, Hunan 410083</wicri:noRegion>
</affiliation>
</author>
<author>
<name>XIANG ZHANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Super-microstructure and Ultrafast Process in Advanced Materials, School of Physics and Electronics, Central South University</s1>
<s2>Changsha, Hunan 410083</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Changsha, Hunan 410083</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics and Electronics, Central South University</s1>
<s2>Changsha, Hunan 410083</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Changsha, Hunan 410083</wicri:noRegion>
</affiliation>
</author>
<author>
<name>XINGDA XIA</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Super-microstructure and Ultrafast Process in Advanced Materials, School of Physics and Electronics, Central South University</s1>
<s2>Changsha, Hunan 410083</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Changsha, Hunan 410083</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics and Electronics, Central South University</s1>
<s2>Changsha, Hunan 410083</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Changsha, Hunan 410083</wicri:noRegion>
</affiliation>
</author>
<author>
<name>LEI ZHANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Super-microstructure and Ultrafast Process in Advanced Materials, School of Physics and Electronics, Central South University</s1>
<s2>Changsha, Hunan 410083</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Changsha, Hunan 410083</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics and Electronics, Central South University</s1>
<s2>Changsha, Hunan 410083</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Changsha, Hunan 410083</wicri:noRegion>
</affiliation>
</author>
<author>
<name>HAN HUANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Super-microstructure and Ultrafast Process in Advanced Materials, School of Physics and Electronics, Central South University</s1>
<s2>Changsha, Hunan 410083</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Changsha, Hunan 410083</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics and Electronics, Central South University</s1>
<s2>Changsha, Hunan 410083</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Changsha, Hunan 410083</wicri:noRegion>
</affiliation>
</author>
<author>
<name>YONGLI GAO</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Super-microstructure and Ultrafast Process in Advanced Materials, School of Physics and Electronics, Central South University</s1>
<s2>Changsha, Hunan 410083</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Changsha, Hunan 410083</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics and Electronics, Central South University</s1>
<s2>Changsha, Hunan 410083</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Changsha, Hunan 410083</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Physics and Astronomy, University of Rochester</s1>
<s2>Rochester, NY 14627</s2>
<s3>USA</s3>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Rochester, NY 14627</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">14-0095575</idno>
<date when="2014">2014</date>
<idno type="stanalyst">PASCAL 14-0095575 INIST</idno>
<idno type="RBID">Pascal:14-0095575</idno>
<idno type="wicri:Area/Main/Corpus">000038</idno>
<idno type="wicri:Area/Main/Repository">000135</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1566-1199</idno>
<title level="j" type="abbreviated">Org. electron. : (Print)</title>
<title level="j" type="main">Organic electronics : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Active layer</term>
<term>Atomic force microscopy</term>
<term>Buffer layer</term>
<term>Butyric acid</term>
<term>Cathode</term>
<term>Conversion rate</term>
<term>Crystallinity</term>
<term>Diffusion</term>
<term>Diversity combining</term>
<term>Doped materials</term>
<term>Energy conversion</term>
<term>Ester</term>
<term>Fullerene compounds</term>
<term>Indium oxide</term>
<term>Lamellar structure</term>
<term>Light scattering</term>
<term>Nanoparticle</term>
<term>Organic solar cells</term>
<term>Oxygen</term>
<term>Particle size</term>
<term>Performance evaluation</term>
<term>Polymer blends</term>
<term>SAED</term>
<term>Short circuit currents</term>
<term>Styrenesulfonate polymer</term>
<term>Thiophene derivative polymer</term>
<term>Tin addition</term>
<term>Titanium oxide</term>
<term>Transmission electron microscopy</term>
<term>X ray diffraction</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Evaluation performance</term>
<term>Cellule solaire organique</term>
<term>Couche active</term>
<term>Cathode</term>
<term>Combinaison diversité</term>
<term>Microscopie électronique transmission</term>
<term>Diffraction électron sélection aire</term>
<term>Diffraction RX</term>
<term>Microscopie force atomique</term>
<term>Cristallinité</term>
<term>Dimension particule</term>
<term>Diffusion lumière</term>
<term>Structure lamellaire</term>
<term>Conversion énergie</term>
<term>Taux conversion</term>
<term>Addition étain</term>
<term>Courant court circuit</term>
<term>Diffusion(transport)</term>
<term>Oxyde de titane</term>
<term>Nanoparticule</term>
<term>Couche tampon</term>
<term>Oxyde d'indium</term>
<term>Styrènesulfonate polymère</term>
<term>Thiophène dérivé polymère</term>
<term>Mélange polymère</term>
<term>Acide butyrique</term>
<term>Ester</term>
<term>Composé du fullerène</term>
<term>Oxygène</term>
<term>Matériau dopé</term>
<term>6837P</term>
<term>8105T</term>
<term>6630P</term>
<term>66</term>
<term>TiO2</term>
<term>ITO</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Oxygène</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">TiO
<sub>2</sub>
sols synthesized with a facile solution-based method were used as a buffer layer between the active layer and the cathode Al in conventional structure polymer solar cells (PSCs). Using transmission electron microscopy (TEM), selected area electron diffraction (SAED), X-ray diffraction (XRD) and atomic force microscopy (AFM), the morphological and crystallographic properties of synthesized TiO
<sub>2</sub>
nanoparticles (TiO
<sub>2</sub>
NPs) as well as the buffer layer were studied in detail. It was observed that by increasing H
<sub>2</sub>
O in the process of peptization both the crystallinity and particle size of TiO
<sub>2</sub>
NPs were enhanced, while the particles in sol showed a narrower size distribution conformed by dynamic light scattering. Inserting TiO
<sub>2</sub>
NPs as a buffer layer in conventional structure PSCs, both the power conversion efficiency (PCE) and stability were improved dramatically. PSCs based on the structure of ITO/PEDOT:PSS/P3HT:PCBM/TiO
<sub>2</sub>
NPs/Al showed the short-circuit current (J
<sub>sc</sub>
) of 12.83 mA/cm
<sup>2</sup>
and the PCE of 4.24%. which were improved by 31% and 37%, respectively comparing with the reference devices without a TiO
<sub>2</sub>
buffer layer. The stability measurement showed that PSC devices with a TiO
<sub>2</sub>
NPs buffer layer could retain 80% of the original PCEs after exposed in air for 200 h, much better than the devices without such a buffer layer. The effect can be attributed to the protection by the buffer layer against oxygen and H
<sub>2</sub>
O diffusion into the active layers. The observations indicate that TiO
<sub>2</sub>
NPs synthesized by facile solution-based method have great potential applications in PSCs, especially for large-area printed PSCs.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1566-1199</s0>
</fA01>
<fA03 i2="1">
<s0>Org. electron. : (Print)</s0>
</fA03>
<fA05>
<s2>15</s2>
</fA05>
<fA06>
<s2>4</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Enhanced efficiency and stability of polymer solar cells with TiO
<sub>2</sub>
nanoparticles buffer layer</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>JIAN XIONG</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>BINGCHU YANG</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>CONGHUA ZHOU</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>JUNLIANG YANG</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>HAICHAO DUAN</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>WENLONG HUANG</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>XIANG ZHANG</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>XINGDA XIA</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>LEI ZHANG</s1>
</fA11>
<fA11 i1="10" i2="1">
<s1>HAN HUANG</s1>
</fA11>
<fA11 i1="11" i2="1">
<s1>YONGLI GAO</s1>
</fA11>
<fA14 i1="01">
<s1>Institute of Super-microstructure and Ultrafast Process in Advanced Materials, School of Physics and Electronics, Central South University</s1>
<s2>Changsha, Hunan 410083</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics and Electronics, Central South University</s1>
<s2>Changsha, Hunan 410083</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Department of Physics and Astronomy, University of Rochester</s1>
<s2>Rochester, NY 14627</s2>
<s3>USA</s3>
<sZ>11 aut.</sZ>
</fA14>
<fA20>
<s1>835-843</s1>
</fA20>
<fA21>
<s1>2014</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>27255</s2>
<s5>354000500416400010</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>33 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0095575</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Organic electronics : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>TiO
<sub>2</sub>
sols synthesized with a facile solution-based method were used as a buffer layer between the active layer and the cathode Al in conventional structure polymer solar cells (PSCs). Using transmission electron microscopy (TEM), selected area electron diffraction (SAED), X-ray diffraction (XRD) and atomic force microscopy (AFM), the morphological and crystallographic properties of synthesized TiO
<sub>2</sub>
nanoparticles (TiO
<sub>2</sub>
NPs) as well as the buffer layer were studied in detail. It was observed that by increasing H
<sub>2</sub>
O in the process of peptization both the crystallinity and particle size of TiO
<sub>2</sub>
NPs were enhanced, while the particles in sol showed a narrower size distribution conformed by dynamic light scattering. Inserting TiO
<sub>2</sub>
NPs as a buffer layer in conventional structure PSCs, both the power conversion efficiency (PCE) and stability were improved dramatically. PSCs based on the structure of ITO/PEDOT:PSS/P3HT:PCBM/TiO
<sub>2</sub>
NPs/Al showed the short-circuit current (J
<sub>sc</sub>
) of 12.83 mA/cm
<sup>2</sup>
and the PCE of 4.24%. which were improved by 31% and 37%, respectively comparing with the reference devices without a TiO
<sub>2</sub>
buffer layer. The stability measurement showed that PSC devices with a TiO
<sub>2</sub>
NPs buffer layer could retain 80% of the original PCEs after exposed in air for 200 h, much better than the devices without such a buffer layer. The effect can be attributed to the protection by the buffer layer against oxygen and H
<sub>2</sub>
O diffusion into the active layers. The observations indicate that TiO
<sub>2</sub>
NPs synthesized by facile solution-based method have great potential applications in PSCs, especially for large-area printed PSCs.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A07W</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B60A16C</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B80A05T</s0>
</fC02>
<fC02 i1="05" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Evaluation performance</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Performance evaluation</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Evaluación prestación</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Cellule solaire organique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Organic solar cells</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Couche active</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Active layer</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Capa activa</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Cathode</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Cathode</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Cátodo</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Combinaison diversité</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Diversity combining</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Combinación diversidad</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Microscopie électronique transmission</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Transmission electron microscopy</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Microscopía electrónica transmisión</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Diffraction électron sélection aire</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>SAED</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Diffraction RX</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>X ray diffraction</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Difracción RX</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Microscopie force atomique</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Atomic force microscopy</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Microscopía fuerza atómica</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Cristallinité</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Crystallinity</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Cristalinidad</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Dimension particule</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Particle size</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Dimensión partícula</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Diffusion lumière</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Light scattering</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Difusión luz</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Structure lamellaire</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Lamellar structure</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Estructura lamelar</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Conversion énergie</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Energy conversion</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Conversión energética</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Taux conversion</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Conversion rate</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Factor conversión</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Addition étain</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Tin addition</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Adición estaño</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Courant court circuit</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Short circuit currents</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Diffusion(transport)</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Diffusion</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Oxyde de titane</s0>
<s5>22</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Titanium oxide</s0>
<s5>22</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Titanio óxido</s0>
<s5>22</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Nanoparticule</s0>
<s5>23</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Nanoparticle</s0>
<s5>23</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Nanopartícula</s0>
<s5>23</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Couche tampon</s0>
<s5>24</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Buffer layer</s0>
<s5>24</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Capa tampón</s0>
<s5>24</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>25</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>25</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>25</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Styrènesulfonate polymère</s0>
<s2>NK</s2>
<s5>26</s5>
</fC03>
<fC03 i1="23" i2="X" l="ENG">
<s0>Styrenesulfonate polymer</s0>
<s2>NK</s2>
<s5>26</s5>
</fC03>
<fC03 i1="23" i2="X" l="SPA">
<s0>Estireno sulfonato polímero</s0>
<s2>NK</s2>
<s5>26</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Thiophène dérivé polymère</s0>
<s2>NK</s2>
<s5>27</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Thiophene derivative polymer</s0>
<s2>NK</s2>
<s5>27</s5>
</fC03>
<fC03 i1="24" i2="X" l="SPA">
<s0>Tiofeno derivado polímero</s0>
<s2>NK</s2>
<s5>27</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>Mélange polymère</s0>
<s5>28</s5>
</fC03>
<fC03 i1="25" i2="3" l="ENG">
<s0>Polymer blends</s0>
<s5>28</s5>
</fC03>
<fC03 i1="26" i2="X" l="FRE">
<s0>Acide butyrique</s0>
<s2>NK</s2>
<s5>29</s5>
</fC03>
<fC03 i1="26" i2="X" l="ENG">
<s0>Butyric acid</s0>
<s2>NK</s2>
<s5>29</s5>
</fC03>
<fC03 i1="26" i2="X" l="SPA">
<s0>Butírico ácido</s0>
<s2>NK</s2>
<s5>29</s5>
</fC03>
<fC03 i1="27" i2="X" l="FRE">
<s0>Ester</s0>
<s5>30</s5>
</fC03>
<fC03 i1="27" i2="X" l="ENG">
<s0>Ester</s0>
<s5>30</s5>
</fC03>
<fC03 i1="27" i2="X" l="SPA">
<s0>Ester</s0>
<s5>30</s5>
</fC03>
<fC03 i1="28" i2="3" l="FRE">
<s0>Composé du fullerène</s0>
<s5>31</s5>
</fC03>
<fC03 i1="28" i2="3" l="ENG">
<s0>Fullerene compounds</s0>
<s5>31</s5>
</fC03>
<fC03 i1="29" i2="X" l="FRE">
<s0>Oxygène</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>32</s5>
</fC03>
<fC03 i1="29" i2="X" l="ENG">
<s0>Oxygen</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>32</s5>
</fC03>
<fC03 i1="29" i2="X" l="SPA">
<s0>Oxígeno</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>32</s5>
</fC03>
<fC03 i1="30" i2="3" l="FRE">
<s0>Matériau dopé</s0>
<s5>46</s5>
</fC03>
<fC03 i1="30" i2="3" l="ENG">
<s0>Doped materials</s0>
<s5>46</s5>
</fC03>
<fC03 i1="31" i2="X" l="FRE">
<s0>6837P</s0>
<s4>INC</s4>
<s5>56</s5>
</fC03>
<fC03 i1="32" i2="X" l="FRE">
<s0>8105T</s0>
<s4>INC</s4>
<s5>57</s5>
</fC03>
<fC03 i1="33" i2="X" l="FRE">
<s0>6630P</s0>
<s4>INC</s4>
<s5>58</s5>
</fC03>
<fC03 i1="34" i2="X" l="FRE">
<s0>66</s0>
<s4>INC</s4>
<s5>59</s5>
</fC03>
<fC03 i1="35" i2="X" l="FRE">
<s0>TiO2</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC03 i1="36" i2="X" l="FRE">
<s0>ITO</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fN21>
<s1>132</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000135 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000135 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:14-0095575
   |texte=   Enhanced efficiency and stability of polymer solar cells with TiO2 nanoparticles buffer layer
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024